Final Documentation of InternSHare

Billy Yi Daisy Huynh Yumeng Lu
ly1387@nyu.edu anh422@nyu.edu y17002@nyu.edu

July 27, 2022

Contents

1 Description 1

2 Process 1

3 Requirements & Specification 2

4 Architecture & Design 5
4.1 Database Design & Classes L 6
4.2 API Design e 7
4.3 Frontend Design 8

5 Reflections 10

1 Description

InternSHare is a web system that serves the purpose of finding jobs or internships for NYUSH students
and serves the companies, NYUSH students to find the candidates or successors for the jobs that they
want to offer. Students can register or log in if they are already a member of the system. On the home
page, customized job positions will be recommended to students. Students can also search for their
desired jobs using hashtags, filters or direct search and then apply. Meanwhile, students can post a job
post with job requirements, job title and job description included. They can view their posted job’s
candidates and choose to accept or reject their applications. Students can also upload their CV or
use the default template as their profile page. Furthermore, they can adjust the status of their profile
page to determine if it can be viewed by others. Similarly, companies can register or log in if they are
already a member of the system. They can post a job post and decide whether to accept a student’s
job application. Both company user and NYUSH student user can start a general post, where users
can discuss anything related to job hunting, internship experience, course evaluation e.t.c.

2 Process

Our team has followed the process of Extreme Programming (XP) software development process.The
reason is that our team has only small amount of members (3 members in total) and that the project
do not need exact precision when implementing, in addition, there are many great key practices of
XP development process that we think would benefit us during our coding process. Our process for
iterative development is that we break down our InternSHare project by individual user cases such
as search job,login,apply, e.t.c. As the timeline that was given by the Professor where we have
a progress meeting every 2 weeks, we therefore have planned to complete one to two user cases per
iteration and thus set up a managable timeline in order to finish our project on time. For testing
process, our group has followed the white box testing method because we believe that through white
box testing method, we can better evaluate our code structures, design and the working flow of the
website. From this, we can further improve the design of the project and improve usability for users. For
the last month of the working time, we have decided to do collaborative process using pair programming

mailto:ly1387@nyu.edu
mailto:anh422@nyu.edu
mailto:yl7002@nyu.edu
https://github.com/billyblu2000/internshare

which in our case is ”triple” programming. Eventhough there indeed are difficulty in trying to make
use of collaborative coding since we are in different timezones, however, every member has managed
to put in their effort and time to do "triple” programming through Zoom meeting 2 times every week.
The description above are the process that our team InternSHare has used throughout our project.

3 Requirements & Specification

Below are the main use cases in our InternSHare project.

LOGIN
1D: | 01
Title: | Allow user to log in.
Description: | User who already register to our website will be able to log in using the
registered email and password.
Primary Actor: | Student and Company.
Preconditions: | The user has to first already registered using their email.
Postconditions: | The user will be in logged in phase and their session will be save to
the database.
Main | The user who already has registered information will enter their email

Success Scenario:

and password to log in, then they will be directed to the main page of
the website with their session started and saved in our database.

Extensions:

Other scenario that can be happened is when the user type in the
wrong email or password, then our website will give the instruction to
the user so that they can proceed to the next step.

If the user type in the wrong email, we will notify email entered is
wrong and ask them to retype or to register if they have not.

If the password is wrong, we will notify password entered is wrong and
ask them to retype password or to click forget password which will
lead them to receive their reset password through email.

Frequency of Use:

This method will be used whenever the user wants to do other user
cases such as post job, apply, offer)

Priority:

High priority

Figure 1: Login use case

[+

[H

SEARCH JOB

ID: | 02
Title: | Allow user to search job.
Description: | User who accesses our main page on the website will be able to
search job.
Primary Actor: | General user.

Preconditions:

The user has to first access to our website’s main page and enter key
word that they want to search on the search bar.

Postconditions:

The user will receive several job posts related to the search key word
that the user enter in the search bar.

Main
Success Scenario:

User who enter our main page on the website can enter some
keyword on the search bar and the website will return several job
posts that related to that specific keywords.

Extensions:

If the user already logged in, the search job can also show some
recommended job posts related to their major.

Frequency of Use:

This method will be used whenever the user wants to search for jobs.

Priority: | High priority
Figure 2: Search job use case
POST JOB
ID: [03
Title: | Allow user to post job.
Description: | User who logged in will be able to post a job post on our website.
Primary Actor: | Student and Company.

Preconditions:

The user has to first logged in and click onto the post job option.

Postconditions:

The user entered job post will be post on our website.

Main
Success Scenario:

User who logged in to our website will be able to post job by click onto
post job option, enter relevant information such as job description, job
requirements, apply deadline date, etc. Then the job post will be post

publicly on our website.

Extensions:

No specific extension for this use case.

Frequency of Use:

This method will be used whenever the user wants to post job to
recruit users from our website.|

Priority:

High priority

Figure 3: Post job use case

04

Title:

Allow user to apply to job post.

Description:

User who logged in will be able to apply to any job post available on
our website.

Primary Actor:

Student.

Preconditions:

The user has to first logged in and click onto specific job post that they
want to apply and the apply option button.

Postconditions:

The user will be applied to that specific job post.

Main
Success Scenario:

User who logged in to our website will be to select any specific job
post that they want to apply for. Then they will have the option to
either submit through CV or online application. Then, they will be
saved as already applied to that specific job.

Extensions:

No specific extension for this use case.

Frequency of Use:

This method will be used whenever the user wants to apply to a job
post that is available on our website.

Priority: | High priority
Figure 4: Apply use case
OFFER
1D: | 04
Title: | Allow user to offer or not offer the applicants the job.

Description: | User who logged in will be able to see the applicants who apply for
their specific job post and will be able to offer or declined their
applications.

Primary Actor: | Student and Company.

Preconditions: | The user has to first logged in and click onto specific job post that they
want to check and then choose the approved or declined button option
for each applicants.

Postconditions: | The applicants’ status will be saved as either approved or declined
after the action occurred.
Main | User who logged in to our website will be to select any specific job

Success Scenario:

post that they want to check applicant for. Then, they can choose to
offer or decline job offers to each of the applicants who apply to their
specific job posts.

Extensions:

No specific extension for this use case.

Frequency of Use:

This method will be used whenever the user wants to offer or decline
the application of the applicants for their job posts.

Priority:

High priority

Figure 5: Offer use case

4 Architecture & Design

InternSHare is a web application, hence the design can be generally split into front-end (Web), server
and the database. To use the application, user will have to first enter the URL (Domain) of the
InternSHare server, the server will then return the index.html file and the related CSS and JS file
back to the browser. Note that this is the only time that the server returns the whole HTML file.
Once the application is initiated at the browser, later requests will only include pure data requests.
Data requests, or API requests, will be first parsed by the server, then the server will operate DAOs
to fetch or update the corresponding data. The returned data is in JSON format. An overall system
design is shown in Figure 6.

Backend: Server
API (eoe | Main Framework Addition Supports
[coo e
—_—) Flask flask_mail
L]
Frontend o
Main Framework
React I Dao
Addition supports
Ant Design Backend: Database
MO.Ck-I 8 Main Framework Additional Supports
Axios SQLAlchemy Amazon Cloud
___________________4

Figure 6: The Overall System design

In the actual implementation, front-end choose React as the main framework, as it is very popular
in recent developments. React is famous for high-performance responding and building single page
applications. Additionally, front-end also utilize the Ant Design UI module to construct some ele-
ments in the web page. Other frameworks and modules including Mockjs and Axios will be further
discussed in Section 4.3. The server part choose Flask as the main framework, which is a lightweight
server framework with rich functions on the Python platform. The server part also utilized modules
including flask_mail to handle the mailing tasks. The database side choose SQLAlchemy as the main
framework, which is a powerful ORM framework. The database was set on Amazon Cloud.

4.1 Database Design & Classes

- company
- registerC

1D int
‘omplete: bool

+ register(info: Company info): return bool

Figure 7: The Overall Database Class Design

The overall table and class design is shown in Figure 7. Generally, every user in the system is abstracted
into Member, some generic methods including 1login() and postPost () are implemented in the Member
class. More concretely, there are there types of users in the system, Student, Company, and Admin.
Because of time limit, the Admin role is not currently implemented. Compared with Company, Student
have additional methods including apply () to a job post. An Application will be initiated when the
apply behavior occurred. Student also have a additional association with the Profile class. Each
Student can have at most one Profile, and others can only view your profile if any of the following
two situations matches: (1) You have set your profile visibility to public. (2) The profile viewer is the
publisher of one of your application’s target post.

All Member in the system are allowed to publish Post. Post is also an abstraction, because there
are two types of Post in the system: Job Post and General Post. Job Post is the post that are
intended to seek for suitable applicants, and General Post can be anything, for instance, internship
experiments sharing etc. Posts can have Hashtags, which are used for recommendation and filtering.
Students are allowed to apply to Job Posts, the Application will be then created. If a Student or
a Company is the publisher of some Job Post, he or she will be able to view all the applicants of that
Job Post, and also accept or reject some Applications. He or she will also be able to delete or
modify the Post. Additionally, Members are able to create Comments to Post or other Comments. He
or she is also able to like a Comment, the like information will be preserved in a special Like table.

In actual implementation, SQLAlchemy is utilized to serve as the ORM framework. The choose
of this framework highly improves the development efficiency, it decoupled the table relationship the
with SQL statement, and provides a convenient, DAO-like API interface for the Flask controller.

4.2 API Design

Table 1: API reference

Path Method Params Frontend Page Flask Blueprint
/api/login post email, password 2 loginRegister
/api/login/student /sendemail post email 2 loginRegister
/api/login/student /verify get email, code 2 loginRegister
/api/login/register /student post email, password, confirPW 2 loginRegister
/api/homepage/searchsuggestions post content 1.1, 1.2 homepage
/api/search/jobpost post filter, pagenumber 1.2 search
/api/homepage/recommendpost/jobs get 1.1,1.3 homepage
/api/homepage/applystatus post 1.1, 1.3.3 homepage
/api/job/detailedinfo post jobpost_id, method, publisher 1.5 jobpost
/api/job/getpostcomment post jobpostid 1.5 jobpost
/api/job/create/comment post content, jobpost_id, target_id 1.5 jobpost
/api/job/update/comment post comment_id, new_content 1.5 jobpost
/api/job/delete/comment post comment_id 1.5 jobpost
/api/job/like/comment post comment_id 1.5 jobpost
/api/job/apply post jobpost_id, method, publisher 1.5 jobpost
/api/apply/cancel post application_id 1.3.3 apply
/api/profile/get post email 1.3.1 profile
/api/profile/update post project_experience, ... 1.3.1 profile
/api/profile/download post cv.id 1.3.1 profile
/api/profile/getname get 1 profile
/api/profile/changesvisibility get status 1.3.4 profile
/api/mypost/get get 1.3.2 mypost
/api/mypost/create post post_title, company name,... 1.3.2 mypost
/api/mypost /viewall post 1.3.2 mypost
/api/mypost/delete post job_id 1.3.2 mypost
/api/mypost/update post id, post_title, company name 1.3.2 mypost
/api/mypost/accept/application post application_id 1.3.2 accept
/api/mypost/reject /application post application_id 1.3.2 reject

The API design follows the RESTful format. All APIs are using either GET method or POST method,
and the route all starts with a prefix /api. This is to differentiate the backend (API) route with
the frontend (URL) route. Whenever an HTTP request arrives at the Flask server, Flask will first
parse the route to see if it starts with the /api prefix. If not, the 404Handler will return the index
page index.html. This also enables the user to refresh the page that contains sub routes. In real
deployment, the /api prefix also be a reference for production servers like Apache or Nginx to redirect
the request.

The APIs are split into sub categories for better management. Flask Blueprint can help create
sub routes and thus form a routing table. In actual implementation, there are 7 sub routes: /login,
/homepage, /job, /search, /profile, /apply, /mypost. These sub routes also fits well according to
the frontend page design.

All API returns are in JSON format. The returns usually contains two fields: status and result.
status specifies whether the request have achieve its intention, and why not. result usually con-
tains the desired data, if any. If the requested data is a single object, for instance, the profile info,
then result will be a dictionary (or JavaScript Object). If the requested data is several objects of
the same type, then result will be a list. The following provides an example of the API returns.
(/api/job/getpostcomment)

{
"result": [
{
"color": "#bf3f84",
"company_email": null,
"content": "Change successfully",
"datetime": "04/30/2022, 18:56:39",
"descendent": [...],
"id": 1,
Fo
]’
"status": "ok"
}

All APIs in the system are shown in Table 1. In actual implementation, The Flask framework
provides a solid foundation for responding API requests. We are also glad that we have stick to the
Python language based server framework and ORM, as it greatly reduces the risk of being stuck with
some difficult technical problems.

4.3 Frontend Design

Frontend designs can be split into pages, shown in Figure 8. Each leaf node in this tree is generally
a React Component, and are controlled by React Router to mount according to specific URLs. React
Router will be listening to the URL when the application is initiated, and mount or unmount specific
components once the URL changes. Among all pages, the Main Page is used for all the major oper-
ations, while the Login Page handles the login and register behavior. Main Page can be divided into
five sub pages, the Home Page provides a integration of search, position feed, check recent apply status
functions, which plays a good role in navigation. The Search Page provides detailed search functions,
including category filter and sorting (not currently implemented). The Home Page and the Search
Page can be accessed from the global Header in the system. The User Page is a place to view other’s
profile, the Post Page is to view the detailed information of a post and all the corresponding comments.
Users will be able to apply to a post on the Post page, as well as creating comments or like comments.
The User Page and the Post Page can be accessed by clicking usernames or posts respectively, as these
two pages need the user’s email and the postId to render. My page can be access by clicking the
avatar after logged in. It’s also split into four sub-sub-pages. The profile page is a place to view the
current profile info, update online profile, upload or download the CV PDF file. The My Posts Page
and My Applies Page function as viewing all the user’s posts and applies respectively. The function
of updating posts, deleting posts and creating posts can also be accessed from the My Posts Page.

Pages Sub-pages Sub-sub-pages

Home Page (1.1) | Search. feed. cte.

/main/home

Search Page (1.2) | Detailed search

/main/search

Me Page (1.3)

/main/me

View the current user’s profile

Profile Page (1.3.1)

Every contentin the system

/main/me/profile

Main Page (1)

/main

My Posts Page (1.3.2)

View the current user’s posts

/main/me/posts

Login or register

Login Page (2)

/login

View other My Applies Page (1.3.3) | View the currentuser’s applics
user’s profile

User Page (1.4)

/main/user

Post Page (1.5)

/main/post

/main/me/applies

Detailed post info Settings Page (1.3.4) View all the settings options

/main/me/settings

Figure 8: The page organization of the frontend design

1
. . 1
Page: Frontend URL 2 IREACORON on '
W / :
React Component / N
/ Routing !
/ Table 4
J I 1
&= | Stat !
ate /‘/ Mockjs !
View / 1
(Some UT / :
I ——— /’ 1 Flask Server
Ant Design) ! t / :
/ 1
API Data |
Fetcher / API Controller ~| B Fllowy

React Component

Frontend Backend

Figure 9: The data flow and the API controller structure in the frontend design

Frontend designed a unified API controller class to handle all the API requests. In development,
backend usually does not implement the functions of API in time, but the front end still needs to
be developed as planned. Hence, the Mockjs module is used to generate mock data. Each time the
React Component is mounted, it will first initiate a new API fetching request, the request is consisting
three parts: the key of which API it is going to use, a list of parameters required by this API, and
the callback function after the data is returned. The request will be then sent to the API controller,
where the controller will search in the API config table for the path, method, and the variable names
according to the API key, and then start the HT'TP request. In development environment, the HTTP
request is responded by Mockjs, while in production it is responded by the actual backend. Once the
data is returned, the API controller will call the callback function to update the state of the React
Component. This pattern is very similar to the Observer pattern, where each React Component is an
observer. A complete data flow is shown in Figure 9.

Figure 10 is the UML diagram of this structure. But notice that this UML does not reflect the
actual implementation, because React Components are not following the OOP philosophy. But the
UML do reflect the logic of the design.

In actual implementation, the choose of the React framework makes it very easy to separate the
frontend and backend development, and provides a solid foundation for the frontend to realize complex
functions.

Abstruct React Component <<interface>> APIControler
APIDataFetcher
+state _ useMock
+fetchData()
+tender() +handelResponse() +request()

T A

Concrete React Component

|
|
|
|
|
|
|
|
/

+state

+render()

Figure 10: Some visual designs

5 Reflections

e Frontend reflection - Billy: In the design and development process, frontend have not en-
counter any serous problem. However, the inadequate communications with the backend have
still cause some problems when doing joint debugging. The inconsistency of some variable names
in the APIs have been very troublesome and it cost us huge amount of time to fix it. Although
we have use API documentations to communicate, but sometime the backend updated the docu-
ments and the frontend don’t know, or sometime the backend updated the code without updating
the documents. This experience taught me the importance of detailed communication.

e Database reflection - Daisy: For me, this is my first time using SQL Alchemy in implementing
the database which at first I was really unfamiliar with and the process was a little slow. However,
after about 2 iterations, I have started to get used to the flow and able to produce the code
quicker. It was difficult at first to translate the query for Lucy who is in charge of the back end
code since we have some misunderstanding about what the SQL code should return. After some
time, we were able to better cooperate by doing more communications and increase our time of
Zoom meetings per week to discuss our process and our schedule. I think the hardest problem
for me would be to set up the Cloud Database. This is because we first decide to use Google
Cloud Database and already finish implementing all the requirements to connect to the Cloud
Database, however due to the fact that we have to upload our codes on GitHub, the Google
Cloud Database have locked our account and connections. Thus, I had to spend another week
to implement another Cloud Database which is the Amazon AWS and also the one that we are
using right now for our project. Overall, I definitely have learned a lot from the class and my
teammates. We are always ready to answer any questions or to discuss about an error that we
have in our codes which makes the process a lot easier.

e Backend reflection - Yumeng: Back-end CRUD operations are not very difficult, except
when dealing with the data type of Date, one need to pay special attention to the format of
data written to the database. Also, the data extracted from the database should be converted
into String or other data type that can be used directly by the front-end. Another problem is
that since this is my first time to use API as a backend, I lack effective communication with
the frontend in terms of incoming parameters and outgoing data. Sometimes the parameters
requested by the back-end are not supported by the front-end, and sometimes the data returned
by the back-end is incomplete. Meanwhile, I used flask’s blueprint to rearrange the whole API
routes when refactoring. These somehow lead to the failure of connecting front-end and back-end
due to unmatched content. Next time, I will determine the required APIs with the front-end as
early as possible, along with the required parameters and returned data. I will also notify the
front-end whenever any change is made to APIs to ensure the smooth development.

10

	Description
	Process
	Requirements & Specification
	Architecture & Design
	Database Design & Classes
	API Design
	Frontend Design

	Reflections

